Sheng-lian Lee, Timothy W. Hepburn, Patrick S. Mariano,* and Debra Dunaway-Mariano*

Department *of* Chemistry and Biochemistry, Uniuersity *of* Maryland, College Park, Maryland **20742**

Received *August* **7,** 1990

Summary: The enzyme phosphonoacetaldehyde hydrolase (phosphonatase) catalyzes the conversion of phosphonoacetaldehyde to phosphate and acetaldehyde. Previous studies have demonstrated that phosphonatase labilizes the C-P bond in this process by forming a protonated Schiff base between an active site lysine and the carbonyl group of phosphonoacetaldehyde. The synthesis of potential stereochemical probes of this C-P bond cleaving reaction, the chiral **[180,'70]thiophosphonoacetaldehyde** enantiomers, and the stereochemical course of their aniline-catalyzed hydrolyses to yield acetaldehyde and $[{}^{18}O,{}^{17}O,{}^{16}O]$ thiophosphate are described.

The advent of C-P bond containing herbicides, pesticides, antibiotics, and neurotoxins, together with the discovery of naturally occurring phosphonates, have promoted interest in the biological degradation of these compounds.' To date, two fundamentally different C-P bond cleaving pathways in bacteria have been uncovered. C-P Lyase² transforms a number of alkylphosphonates into their respective hydrocarbons and orthophosphate via radical mechanisms.³ In contrast phosphonatase, a component of the (2-aminoethyl) phosphonate metabolizing pathway,^{4,5} catalyzes the cleavage of phosphonoacetaldehyde to acetaldehyde and orthophosphate via a polar Schiff base $mechanism.⁵$

Central to delineating the mechanisms of phosphoryl transfer from organophosphates has been the determination of the stereochemical course of the reactions at phosphorus. 6 We now report a method for elucidating the phosphorus stereochemistry in the hydrolytic C-P bond cleavage reactions of phosphonates which is based on the preparation of chiral $[^{18}O, ^{17}O]$ thiophosphonates.⁷ Herein, we describe the syntheses and configuration assignments of the enantiomers of chiral $[{}^{18}O,{}^{17}O]$ thiophosphonoacet-

(3) Cordeno, M. L.; Pompliano, D. L.; Frost, J. W. J. Am. Chem. Soc.
1986, 108, 332. Frost, J. W.; Loo, S.; Cordeiro, M. L.; Li, D. J. Am. Chem.
Soc. 1987, 109, 2166. Avila, L. Z.; Loo, S. H.; Frost, J. W. J. Am. Chem.
Soc **110, 7904.** Shames, S. **L.;** Wackett, L. P.; LaBarge, M. S.; Kuczkowski, R. L.; Walsh, C. T. Bioorg. Chem. **1987, 15, 366.**

(4) La Nauze, **J.** M.; Rosenberg, H. Biochim. *Biophys.* Acta **1968,165, 438.** Dumora, C.; Lacoste, A. M.; Cassaigne, A. *Eur. J.* Biochem. **1983, 133, 119.**

(5) La Nauze, J. M.; Rosenberg, H.; Shaw, D. C. Biochim. Biophys.
Acta 1970, 212, 332. LaNauze, J. M.; Coggins, J. R.; Dixon, H. B. F.
Biochem. J. 1977, 165, 409. Olsen, D. B.; Hepburn, T. W.; Moos, M.;
Mariano, P. S.; Dun **997, 193.**

(6) For a review, **see:** Knowles, J. R. Ann. Reu. Biochem. **1980,49,877.**

(7) Thiophosphonoacetaldehyde is an alternate substrate for phos-
phonatase $(k_{cat} = 50 \text{ min}^{-1}; K_m = 25 \mu\text{M})$.⁸ We are optimistic that thio-
phosphonates will substitute for phosphonates in other enzymic hydrolytic C-P bond cleavage reactions. **(8)** Hepburn, T. W. Ph.D. Dissertation, University of Maryland, **1988.**

aldehyde (CTPA) and the stereochemical course of their aniline-catalyzed hydrolysis to form chiral [**180,170,160]** thiophosphate (CTP).

The antipodes of CTPA were prepared by the sequence shown in Scheme I beginning with the (ethoxyvinyl)thiophosphoric dichloride **1.** Treatment of 1 with 1 equiv of $Li[18O]$ - β -(trimethylsilyl)ethoxide⁹ gave the monoester 2 **(74%).** Reaction of the phosphonyl chloride **2** with the lithium (S) - α -methylbenzylamide yielded a mixture of the diastereomeric thiophosphonamides **3** *(76%).* The individual diastereomers of **3** (separated by HPLC) were treated with cesium fluoride to induce TMS-ethyl ester C-0 bond cleavage yielding (ca. 100%) the cesium salts (R_P, S_C) -4 and (S_P, S_C) -4. The absolute configuration at phosphorus in these substances was determined by X-ray analysis¹⁰ of the crystalline 9-anthracenylmethyl thioester, (S_P, S_C) -5, formed from the ¹⁶O analogue of S_P, S_C diaste-

⁽¹⁾ Hildebrand, R. L., Ed. The Role *of* Phosphonates *in* Living Sys-

tems; CRC Press: Boca Raton, **1983. (2)** Cook, A. M; Daughton, C. G.; Alexander, M. J. Bacteriol. **1978,133, 85.** Cook, A. M.; Daughton, C. G.; Alexander, M. Biochem. J. **1979,184,** 36. Daughton, C. G.; Cook, A. M.; Alexander, M. J. Agric. Food Chem.
1979, 27, 1375. Daughton, C. G.; Cook, A. M.; Alexander, M. J. Agric. Food Chem.
1979, 27, 1375. Daughton, C. G.; Cook, A. M.; Alexander, M. FEMS
Microbi H.; Dui Larson, **A.** D. Appl. *Enuiron.* Microbiol. **1984,48,1049.** Zeleznick, L. D.; Meyers, T. C.; Titchener, E. B. Biochim. *Biophys.* Acta **1963, 78, 546.** Wackett, L. P.; Shames, S. L.; Venditti, C. P.; Walsh, C. T. *J. Bacteriol.* **1987, 169, 710.**

^{(9) (}a) The [¹⁸O](trimethylsilyl)ethanol was prepared (83%) by oxy-
mercuration of vinyltrimethylsilane in H_2 ¹⁸O/THF by use of the method
of Soderquist (ref 9b). Both GC/MS and ¹³C NMR analysis indicated
that thi

⁽¹⁰⁾ The crystallographic data will be reported in a full paper on this subject.

Figure 1. Computer-generated drawing resulting from X-ray crystallographic analysis of (Sp,Sc)-5 formed by reaction of the l60 analogue of (SPSc)-4 with **9-(chloromethyl)anthracene.**

reomer of **4** (Figure 1). Since acid hydrolysis of phosphonamidic acids is known to proceed with predominant inversion of phosphorus configuration,¹¹ treatment of the diasteromers of 4 with 1.5 M PTSA in THF/ H_2 ¹⁷O¹² yielded the respective enantiomers of [180,170]thiophosphonoacetaldehyde, (S_P) - and (R_P) -CTPA.

The phosphonatase-catalyzed C-P bond cleavage reaction is known to occur on a protonated, active-site lysine and phosphonoacetaldehyde (or thiophosphonoacetaldehyde) $\hat{7}$,8 Schiff base. Thus, the aniline-catalyzed dethiophosphonylation of CTPA was investigated as a chemical model of the enzymatic process. Reactions of the CTPA enantiomers with a large excess of aniline were run at pH 8, one found to be optimal for phosphonatase activity.13 Whereas thiophosphonoacetaldehyde is stable in pH 8 buffer for several days, in the presence of 0.22 M aniline the CTPA enantiomers (12 mM) are quantitatively converted to CTP within **3** h at 25 "C.

The absolute configuration of the $[180,170,160]$ thiophosphate generated in each reaction was assigned by using a procedure adapted from those described by Webb and Trentham¹⁴ and Tsai.¹⁵ Accordingly, the thioand Trentham¹⁴ and Tsai.¹⁵ phosphate product was transformed into (S_P) -[β - $^{18}O, ^{17}O, ^{16}O$]ATP βS (65% yield) by an enzymatic reaction sequence with overall retention of the phosphorus configuration. The P_β regions of the ³¹P NMR spectra of the $\text{ATP}\beta\text{S}$ isomers produced from $(R_{\text{P}})\text{-}\text{CTP}\text{A}$ and $(S_{\text{P}})\text{-}$ CTPA by this sequence are shown in Figure 2, parts a and b, respectively. The major resonance displayed in Figure 2a arises from ATP β S containing ¹⁸O in the nonbridging position, thus indicating that the (S_P) -CTP enantiomer results from dephosphonylation of (R_P) -CTPA predominantly. The major resonance seen in Figure 2b arises from $ATP\beta S$ containing ¹⁸O in the bridging position thus indicating that (R_p) -CTP derives from (S_p) -CTPA predominantly. After taking into account the percent of ^{17}O enrichment in the starting CTPA enantiomers, the extent of isotope washout (ca. 10%) occurring in the hydrolysis and or ensuing enzymic reactions, and the enantiomeric purity (ca. 60% ee) of the CTPA isomers used,¹⁶ these data

-
- (15) Tsai, M. D. *Biochemistry* 1980, **29,** 5310.

Figure 2. The β -P region of the ³¹P NMR spectrum of (S_P) -
[β -¹⁸O,¹⁷O]ATP β S derived from the CTP enantiomer arising from (R_P) -CTPA (a) and (S_P) -CTPA (b). Chemical shifts are in ppm relative to 85% H₃PO are from a Brucker **AM-400** spectrometer **(162.04 Hz,** *25* "C, deuterium field lock, spectral width 8333 Hz, aquisition time 3.9 μ s, pulse width of 12.0 μ s). The signals centered at 30.3 ppm in spectrum (b) are for the β -P resonances for the $R_{\rm P}$ isomer formed from ADP β S in the pyruvate kinase reaction.

demonstrate that the aniline-catalyzed dethiophosphonylation of CTPA occurs with ca. 90% inversion

⁽¹¹⁾ Cooper, D. B.; Harrison; J. M.; Inch, T. D. *Tetrahedron Lett.* 1974,31,2697. Harrison, J. M.; Inch, T. D.; Lewis, G. I. *J. Chem.* SOC., *Perkin Trans. I* 1975, 1982. Because P-N bond cleavage precedes hy- drolysis of the enol ether moiety (by NMR) the possibility of intramodrolysis of the enol ether moiety (by NMR) the possibility of intramo-
lecular assistance of phosphonamide hydrolysis by the hydrate form of the aldehyde seems unlikely.

⁽¹²⁾ Isotope distribution was $48.6\% \text{ H}_2^{17}\text{O}$, $30.7\% \text{ H}_2^{18}\text{O}$, $20.7\% \text{ H}_2^{16}\text{O}$.

(13) Olsen, D. B. Ph.D. Dissertation, University of Maryland, 1988.

(14) Webb, M. R.; Trentham, P. R. J. Biol. Chem.

^{(16) (}a) The enantiomer purities of the CTPA antipodes were deter-mined by using the method of Cullis et al. (ref 16b) to be ca. 60% ee; Cullis, P. M.; Iagrossi. A,; Rous, A. J. *J. Am. Chem. SOC.* 1986, *108,* 7869.

of configuration at phosphorus.

These results suggest that the mechanism for $C-P$ bond cleavage in the protonated, aniline-CTPA Shiff base intermediate involves either a concerted displacement with an in-line arrangement of nucleophile $(H₂O)$ and leaving group (PhNHCH= CH_2) or a dissociative process via a tightly paired metathiophosphate intermediate (Scheme II).¹⁷ The stereochemical course of the enzyme catalyzed

(17) Hydrolyses of chiral thiophosphate esters occur with inversion of configuration accompanied, to varying degrees, by racemization. Pressure effects on the rate of hydrolysis of 2,4-dinitrophenyl thiophosphate dianion gives evidence for a dissociation mechanism.¹⁹ (18) Cullis, P. M.; Misra, R.; Wilkins, D. J. J. Chem. Soc., Chem.

Commun. 1987, 1594.

CTPA reaction is now being probed by use of this potentially general methodology.

Acknowledgment. Financial assistance was provided by NIH Grants GM-28688 (D.D.M.) and GM-27251 (P. S.M) and a grant from the Center of Agricultural Biotechnology at the University of Maryland. We are indebted to Dr. Joseph Ferrara (Molecular Structure Corporation) and Professor Herman Ammon (University of Maryland) for carrying out the X-ray analysis. William H. Swart2 provided expert technical assistance during the course of this research.

(19) Burgess, J.; Blundell, N.; Cullis, P. M.; Hubbard, C. D.; Misra, R. *J. Am. Chem. SOC.* 1988, *110,* 7900.

Stereoselective Synthesis of α -Alkyl α -Amino Acids. Alkylation of 3-Substituted **5H,lObH-Oxazolo[3,2-c][1,3]benzoxazine-2(3H),5-diones**

Thomas M. Zydowsky,*,¹ Edwin de Lara,¹ and Stephen G. Spanton²

Abbott Laboratories, Cardiovascular Research Division, D-47B, AP-IO, and Analytical Research Division, 0-418, AP-SA, Abbott Park, Illinois 60064

Received May 16, *1990*

Summary: The alkylation of 3-methyl-, 3-benzyl-, or **3 isobutyl-5H,l0bH-oxazolo[** 3,2-c] [1,3] benzoxazine-2- $(3H)$,5-dione proceeded with retention of configuration $(83$ to >97% ds), and the resulting products were hydrolyzed to afford α -alkyl α -amino acids.

In connection with our recent synthesis of dipeptide isosteres containing γ - or δ -lactams, we needed an expedient route to multigram quantities of optically pure (S) - α -allylphenylalanine 1 ³ Schollkopf reported a synthesis of 1 [90% ee (S)] in 1978 and to our knowledge no other synthesis has been reported.⁴ Since that initial report of Schollkopf, a number of routes to α -alkyl α -amino acids have appeared in the literature. 5 However, a smaller number of these routes have addressed the synthesis of α -allylated amino acids.⁶ In this paper, we report a general and efficient synthesis of α -alkyl α -amino acids which is also suitable for the preparation of α -allylated amino acids.

The starting material for our synthesis was reported in 1971 by Block and Faulkner as part of their work on peptide coupling reactions.⁷ They showed that the con-

(6) The oxazolidinone and imidazolidinone-based methods listed in ref 5 require strong acid or catalytic hydrogenolysis for final deprotection of alkylated intermediates. The reactivity of the allyl group under these conditions precludes their use. An oxazolidinone-based method which employs mild basic conditions for final deprotection would expand the scope of this methodology.

Table I. Survey of Electrophiles

Ratios determined by analysis of 300-MHz NMR spectrum. ^bYield refers to single isomers except as noted in text.

densation of various amino acids with salicylaldehyde and phosgene produced oxazolidinones **2a-c** in 65-7090 yield (Scheme I). These compounds are tricyclic versions of the oxazolidinones that Seebach and others have used for the synthesis of α -alkyl α -amino acids.^{5a-e} Block and Faulkner found that treatment of **2a** with 1 equiv of *n*hexylamine resulted in the immediate precipitation of the corresponding carboxamide-urea 3 in 47 % yield. None of the expected product **4** was isolated, and this approach to peptide synthesis was abandoned. Upon seeing this result, we reasoned that the addition of hydroxide ion to an alkylated derivative of **2a-c** should also occur and that this would directly lead to the desired amino acid (eq 1).

(7) Block, H.; Faulkner, P. J. J. *Chem. SOC.* C 1971, 329.

⁽¹⁾ Cardiovascular Research Division.

⁽²⁾ Analytical Research Division. Author to whom inquiries regarding the crystal structure should be sent.

⁽³⁾ Zydowsky, T. M.; Dellaria, J. F.; Nellans, H. N. *J. Org. Chem.* 1988, 53, 5607.

⁽⁴⁾ Schollkopf, U.; Hausberg, H. H.; Hoppe, I.; Segal, M.; Reiter, U. *Angew. Chem., Intl. Ed. Engl.* 1978, 17(2), 117.

⁽⁵⁾ (a) Fitzi, R.; Seebach, D. *Tetrahedron* 1988, 44(17), 1988. (b) Seebach, D.; Fadel, A. *Helu. Chim. Acta* 1985, *68,* 1243. (c) Fadel, A,; Salaun, J. *Tetrahedron Lett.* 1987,28(20), 2243. (d) Ojima, I.; Chen, H.-J. C. *Tetrahedron* 1988, 5307. **(e)** Karady, S.; Amato, J. S.; Weinstock, L. M. *Tetrahedron Lett.* 1984,25(39), 4337. *(0* Kruizinga, W. H.; Bolster, J.; Kellogg, R. M.; Kamphuis, J.; Boesten, W. H. J.; Meijer, E. M.; Schoemaker, H. E. *J. Org. Chem.* 1988,53(8), 1826. (g) Bajgrowicz, J. A.; Cossec, B.; Pigiere, C.; Jacquier, R.; Villefont, P. Tetrahedron. Lett. 1983, 24(35), 3721. (h) Schollkopf, U.; Groth, U.; Westphalen, K.-O.; Deng, C. Synthesis 1981, 969. (i) Schollkopf, U.; Busse, U.; Kilger, R.; Lehr, P guchi, N.; Yasui, K.; Fukumoto, K. *J. Org. Chem.* 1989, *54,* 5413. (1) Schmidt, U.; Respondek, M.; Lieberkncht, **A.;** Werner, J.; Fischer, P. *Synthesis* 1989, 256.